Probability and Statistics I

STAT 3600 - Fall 2021

Le Chen
lzc0090@auburn.edu

Last updated on
July 4, 2021

Auburn University
 Auburn AL

Chapter 5. Distributions of Functions of Random Variables

§ 5.1 Functions of One Random Variable
§ 5.2 Transformations of Two Random Variables
§ 5.3 Several Random Variables
§ 5.4 The Moment-Generating Function Technique
§ 5.5 Random Functions Associated with Normal Distributions

§ 5.6 The Central Limit Theorem

§ 5.7 Approximations for Discrete Distributions
§ 5.8 Chebyshev Inequality and Convergence in Probability
§ 5.9 Limiting Moment-Generating Functions

Chapter 5. Distributions of Functions of Random Variables

§ 5.1 Functions of One Random Variable
§ 5.2 Transformations of Two Random Variables
§ 5.3 Several Random Variables
§ 5.4 The Moment-Generating Function Technique
§ 5.5 Random Functions Associated with Normal Distributions
§ 5.6 The Central Limit Theorem
§ 5.7 Approximations for Discrete Distributions
§ 5.8 Chebyshev Inequality and Convergence in Probability
§ 5.9 Limiting Moment-Generating Functions

Theorem 5.6-1 (Central Limit Theorem) If \bar{X} is the mean of a random sample $X_{1}, X_{2}, \cdots, X_{n}$ of size n from a distribution with a finite mean μ and a finite positive variance σ^{2}, then the distribution of

$$
W=\frac{\bar{X}-\mu}{\sqrt{\sigma} / n}=\frac{\sum_{i=1}^{n} X_{i}-n \mu}{\sqrt{n} \sigma}
$$

is $N(0,1)$ in the limit as $n \rightarrow \infty$.

When n is "sufficiently large," a practical use of the central limit theorem is approximating the cdf of W, namely,

$$
\mathbb{P}(W \leq w) \approx \int_{-\infty}^{w} \frac{1}{\sqrt{2 \pi}} e^{-z^{2} / 2} d z=\Phi(w) .
$$

Example 5.6-1 Let \bar{X} be the mean of a random sample of size 12 from the uniform distribution on the interval $(0,1)$. Approximate $\mathbb{P}(1 / 2 \leq \bar{X} \leq 2 / 3)$.

Example 5.6-2 Let X equal the weight in grams of a miniature candy bar. Assume that $\mu=\mathbb{E}(X)=24.43$ and $\sigma^{2}=\operatorname{Var}(X)=2.20$. Let \bar{X} be the sample mean of a random of $n=30$ candy bars.
(a) Find $\mathbb{E}(\bar{X})$;

Example 5.6-2 Let X equal the weight in grams of a miniature candy bar. Assume that $\mu=\mathbb{E}(X)=24.43$ and $\sigma^{2}=\operatorname{Var}(X)=2.20$. Let \bar{X} be the sample mean of a random of $n=30$ candy bars.
(b) Find $\operatorname{Var}(\bar{X})$;

Example 5.6-2 Let X equal the weight in grams of a miniature candy bar. Assume that $\mu=\mathbb{E}(X)=24.43$ and $\sigma^{2}=\operatorname{Var}(X)=2.20$. Let \bar{X} be the sample mean of a random of $n=30$ candy bars.
(c) Find $\mathbb{P}(24.17 \leq \bar{X} \leq 24.82)$ approximately.

Example 5.6-2 Let X equal the weight in grams of a miniature candy bar. Assume that $\mu=\mathbb{E}(X)=24.43$ and $\sigma^{2}=\operatorname{Var}(X)=2.20$. Let \bar{X} be the sample mean of a random of $n=30$ candy bars.
(a) Find $\mathbb{E}(\bar{X})$;
(b) Find $\operatorname{Var}(\bar{X})$;
(c) Find $\mathbb{P}(24.17 \leq \bar{X} \leq 24.82)$ approximately.

Ans: (a) ... (b) ... (c) ...

Exercises from textbook: 5.6-2, 5.6-4, 5.6-6, 5.6-7, 5.6-9.

